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Natural Space Environments

Environment Interacts
with Spacecraft 

Components

Atmosphere
Plasma

Debris &
Meteoroid

Space
Radiation

Microelectronics • Detectors
Materials • Spacecraft Charging/Discharging

Design and operation of reliable systems in space 
environments require systems engineering approach
Ref:  “Emerging Radiation Hardness Assurance Issues:  A 
NASA Approach for Space Flight Programs”, LaBel et al.
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Environmental Hazards

Low Earth 
Orbits (LEO)
» Low Inclination
» Polar

Middle Earth 
Orbits (MEO)
Geostationary 
(GEO)
Interplanetary –
AU dependent
Jovian

ESA
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Solar Processes
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The Sun

Dominates space 
environments
» Source
» Modulator

Strongly affects 
atmospheric 
environments
Structure
» Photosphere
» Chromosphere
» Corona

Yohkoh/SXT
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The Solar Interior

The origin of all the energy from the sun is deep inside its core where 600 
million tons of matter turn into energy every second. 
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Sunspots

Discovered by Galileo in 1610

Sunspots are the most obvious indicators of an unsettled Sun.
They are regions of transient, concentrated magnetic field and are 
cooler than their surroundings.
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The 11-Year Solar Activity Cycle

Sunspot cycle discovered 
by Schwab in 1844

Little Ice Age 
in 1645 to 1715

Length varies from 9 - 13 years
7 Years Solar Maximum, 4 Years Solar Minimum
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Solar Minimum - Solar Maximum

SOHO/LASCO
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Corona
Solar wind source
Highly structured region of plasma
Expands outward, parallel to solar field lines

SOHO

» Stream of charged particles
− Electrons
− Protons
− Heavy ions

» Detected out to 10 billion km 
from Earth by Pioneer 10

» Velocity  ~ 300 - 900 km/s
» Energy ~ .5 - 2.0 keV/nuc

Solar Wind
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Solar Wind

Solar wind transports energy from the sun to interplanetary space.
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Solar Energy Transmission to Earth
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Magnetosphere

An invisible cloak of magnetism protects the Earth from much of the 
Sun's storminess.
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Magnetosphere



J. Barth/Code 561 14 February 2002

Magnetic Rigidity
Total Energy Required to Penetrate the Magnetosphere

2 3 4 5 6 7

H

Z > 1

Magnetic Equator 2900 MeV

12 MeV/n
23 MeV/n

46 MeV/n
109 MeV/n

313 MeV/n
1147 MeV/n

87 MeV
173 MeV

284 MeV
987 MeV

48 MeV

momentum
charge

after Stassinopoulos
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Space Climate – “what you expect”
Space Weather – “what you get”
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What is Space Weather?

Definition
» “conditions on the sun and in the solar wind, magnetosphere, 

ionosphere, and thermosphere that can influence the 
performance and reliability of space-borne and ground-based 
technological systems and can endanger human life of health”

[US National Space Weather Program]

Space weather is a complex series of events
» Begins deep inside the Sun and extends throughout the solar 

system, carried by the solar wind
» Most of this weather is both invisible and benign, but 

occasional severe storms can shake the Earth's magnetic field.
» Results in aurora, electrical power blackouts, communication 

problems, and satellite outages. 
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Effects of Space Weather

Environmental effects
» Storms and substorms in the Earth’s magnetosphere
» Increased proton & heavy ion particle counts
» “Pump up” the Van Allen Belts
» Ionospheric disturbances
» Increased levels of atmospheric neutrons

Consequences
» Increased atmospheric drag on Low Earth Orbit (LEO) 

satellites
» Increased radiation exposure on astronauts
» Spacecraft reliability problems – radiation damage, false 

signals on circuits, electrical discharges
» Power black-outs on Earth
» Interference in some radio communication
» Interference with cellular phone systems
» Interference with GPS navigation
» Increased radiation exposure on aircraft
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Solar Flares

Solar system’s largest explosive events during which particles 
are accelerated directly by event
Heavy ion rich solar events may be due solar flares.
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Solar Flare & Particles
SOHO Instruments/EIT & LASCO

Solar flares are observed as sudden brightening near sunspots.
The solar system’s largest explosive events. 
Particles are accelerated directly by event.
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Coronal Mass Ejections

• Bubble of gas & magnetic field
• Ejects billions of tons of matter.
• Shock wave accelerates 

particles to millions of km/hr 
throughout the Solar System.
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CME Movies – TRACE
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CME Movies – SOHO/LASCO
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Magnetic Storms

Major storms probably the result of CMEs
» Must be pointed toward Earth
» Strongest arrive with interplanetary magnetic field 

oriented south
“Gusty” solar wind disturbs the current systems 
in the magnetosphere
Cause increase in rate & intensity of magnetic 
sub-storms in the “tail” of the Earth’s 
magnetosphere
» Energizes and injects particles 
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Effects of Storms on the Magnetosphere
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Sunspot Cycle with Magnetic Storms

Sunspots & Magnetic Storm Days
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Particle Injections

Solar Storms cause particle injections at low latitudes.
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Aurora

Particles stream down on 
magnetic field lines from the 
geomagnetic tail forming an 
auroral belt.
Electrons collide with 
atmospheric gases.
Electrons give energy to 
atoms and molecules which 
emit energy as light.
Oxygen ---> Green
Nitrogen ---> Red
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Space Environments
Description

Time Variations
Modeling Approach

Energy Spectra
Spatial Distribution
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Natural Environments

Meteoroid & Orbital Debris
Atmospheric Density  & Composition
Plasma
Radiation Environment
Electromagnetic Radiation
Thermal Environment
Geomagnetic Field
Gravitational Field
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High Energy Radiation Particles

Trapped Particles

Galactic Cosmic Rays

Solar Protons
&

Heavier Ions

Nikkei Science, Inc. of Japan, by K. Endo
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Outline 

Heavy ions:  He – U (2-92)
» Galactic cosmic rays
» Solar Particle Events (SPEs)

Solar protons
Trapped particles – Van Allen Belts
» Protons
» Electrons
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Galactic Cosmic Ray Ions

All elements in Periodic Table - 200 million years old
Energies in GeV
Found everywhere in interplanetary space
Omnidirectional
Mostly fully ionized - protons & bare nuclei of heavier 
elements
Cyclic variation in fluence levels 
» Lowest levels = Solar Maximum peak
» Highest levels = Lowest point in Solar Minimum

Trajectories bent by magnetic field
Single event effects hazard
Model:  CREME96 – Based on IMP-8 Data
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Discovery of Galactic Cosmic Rays -
1913

Electroscope Experiments
» Dissipation of Charge on Leaves?
» Emissions from Materials on Earth
» “Clean” Instruments Did Not Eliminate Dissipation

Hess
» Balloon Experiments with Electroscopes
» Hypothesis: Background Radiation Will Disappear with 

Increasing Altitude
» > 10,000 feet - Background Increased with Altitude
» Named “Cosmic Rays” by Hess
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Solar Particle Events

Increased levels of protons & heavier ions
Energies
» Protons - 100s of MeV
» Heavier ions - 100s of GeV

Abundances dependent on radial distance from 
Sun
Partially ionized - greater ability to penetrate 
magnetosphere
Number & intensity of events increases 
dramatically during Solar Maximum
Models
» Dose - SOLPRO, JPL, ESP/GSFC&NRL
» Single Event Effects - CREME96 (Protons & Heavier Ions) 
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Heavy Ion Population
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GCRs:  Nuclear Composition
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GCRs:  Shielded Fluences - Fe
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SPEs:  Shielded Fluences - Fe 
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The Magnetospheric Filter - Fe
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Solar Protons
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Solar Protons
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Solar Protons - October 1989 Event
Protons & Electrons - Magnetic Field
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Spectra from Solar Proton Events
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Modeling Approach

Use IMP & GOES proton data
Define statistical engineering model
» Intensity as a function of mission duration & confidence level
» Does not predict when events occur

Apply Maximum Entropy Principle - incomplete dataset
» Determines frequency distribution of large solar proton events
» Frequency distribution consistent with other complex physical 

phenomena such as earthquakes
Apply Extreme Value Theory
» Determines upper limit for occurrence of huge events
» New upper limit consistent with data sets dating back to 

ancient times - Lunar Rock Record
Predicted fluence levels are non-linear in time and 
confidence level
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ESP Model

Solar Protons – 1 year
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Solar Protons: Orbits
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Trapped Particles
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Van Allen Belts

Inner Belt

High Latitude Horns

Slot Region

BIRA/IASBOuter Belt
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Trapped - Van Allen Belts

Omnidirectional
» Anisotropy at inner edge (300-500 km)  2 ~ 7

Components
» Protons: E ~ .04 - 500 MeV
» Electrons: E ~ .04 - 7(?) MeV
» Heavier Ions:  Low E - non-problem for electronics

Population levels vary by location
» Orders of magnitude
» Steep gradients in some locations

Location of peak levels depends on energy
Average counts vary slowly with the solar cycle
Storm effects
Models – AP-8, AE-8, NOAA-PRO, CRRESPRO, CRRESELE
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Particle Cascades in Atmosphere

Collisions between 
cosmic rays & 
atmospheric O & N
CRAND – Comic Ray 
Albedo Neutron Decay

Residual neutrons
» Single Event Upsets

− Shuttle
− Aircraft
− Ground

» Passenger & crew 
exposure in aircraft
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Trapped Particle Motions

Spiral, Bounce, Drift

Proton Drift

Magnetic Field LineElectron Drift

Flux Tube

Trapped Particle Trajectory

Mirror Point

Conjugate Mirror Point

after Hess
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Discovery of the Radiation Belts

James Van Allen
» First observation of 

auroral electrons with a 
rocket

» Cosmic ray detector
Highlight of US 
participation in IGY

Explorer I
31 Jan 1958
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Charged Particle Motion

Birkeland - 1895
» Vacuum chamber experiments to study aurora
» With Poincare showed that charged particles spiraled around 

field lines and are repelled by strong fields
Stöermer -
» Continued work of Birkeland on aurora
» Calculations led to theory that there was a belt-like area 

around the earth in which particles were reflected back and 
forth between the poles

Singer (U. o f Md) - 1957
» Proposed that ring current could be carried by lower energy 

particles injected by into trapped orbits by magnetic storms
Christofilos
» Study of particle motion in magnetic fields - Project Argus
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BB--L Coordinate System L Coordinate System -- DipoleDipole

B - Magnetic Field Strength
L - Distance at Equatorial Crossing in Earth Radii
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after Stassinopoulos
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Proton & Electron Intensities
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AP-8 Model Fluxes vs. L
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AE-8 Model Fluxes vs. L
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Trapped Protons – AP-8
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AP8 - MAX Spectra

Energy Range
» .04 - 500 MeV

Range in Al:
» 30 MeV ~ .17 

inch
Effects:
» Total dose
» Single event 

effects
» Solar cell 

damage
» Displacement 
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Trapped Electrons – AE-8 Solar Minimum

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

-80

-60

-40

-20

0

20

40

60

80

 100

 10 0

 103

 10 3

 104

 104

 105

 105

 106

 106

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

-80

-60

-40

-20

0

20

40

60

80  1

 1

 1

 1

 1
 1

 1000

 1000

 1000

 1000

 10000

 10000

 10000
 10000 10000

 100000
 100000

 100000

 100000
 500000

36,000 km

1,000 km

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

-80

-60

-40

-20

0

20

40

60

80  1

 1

 1000

 1000

 10000

 10000

 100000
 100000

 100000

 100000
 100000

 100000

 1000000

 1000000 5000000

3,000 km

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

-80

-60

-40

-20

0

20

40

60

80  1
 1

 1

 1000 1000

 1000

 10000

 10000

 10000

 10000

 100000

500 km
E > 0.5 MeV (#/cm2/s) - Solar Minimum



J. Barth/Code 561 14 February 2002

AE-8 - MAX Spectra
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Time Variations - Protons

Relatively stable - averages vary slowly with time
Cyclic modulations due to the solar cycle  ~ 2
» Lowest levels are near the peak of solar maximum.
» Highest levels are near lowest point in solar minimum.
» Rate of change ~ 6%/year

Geomagnetic field shift changes location of SAA
» ~ 6 ° westward / 20 years

Storm effects
» Production of new belts – solar proton injection
» Sudden increases in particle levels – orders of 

magnitude
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TIROS/NOAA - Trapped Protons

Solar Cycle Variation:  80-215 MeV Protons
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CRRES - Measured Proton Belt
March 1991

AF Phillips Laboratory, SPD/GD
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Time Variations - Electrons

Cyclic modulation due to the solar cycle  ~ 2
» Highest levels are near peak of solar maximum
» Lowest levels are near lowest point in solar minimum

Inner Zone - fairly stable
Outer Zone - Dynamic  102 ~ 106

» Solar cycle variations are masked
» Local time variations due to magnetic field distortion
» 27-Day variation due to solar rotation

Storm effects
» Production of new belts – accelerated electrons
» Sudden increases in particle levels – orders of 

magnitude
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Electron Variability in Outer Zone
SAMPEX/P1ADC:  Electrons E > 0.4 MeV
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Magnetic Storms - Hipparcos
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Electron Environment Dynamics
April 2001 Storm ~ 800 km
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Radiation Effects
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Radiation Effects on Space Systems
Total Ionizing Dose – Degradation
» Materials
» Electronics

Total Non-ionizing Dose – Degradation 
» Solar Cells
» Detectors – e.g., CCDs, APS
» Optocouplers
» Optical lens

Single Event Effects – Single particle strikes
» Destructive – SEL, SEGR, SEB
» Non-destructive – SEU, SET, SEFI, MBU
» Loss of data to loss of mission

Spacecraft Charging
» Deep dielectric – Accumulation of charge on dielectrics with 

discharges on electronics – pulses and discharges
» Surface – differential buildup - arcing, e.g. high voltage solar 

arrays
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Technology Performance Predictions

Simulated conditions Actual conditions

Systems must 
perform in complex 
Sun-Earth 
environments that 
vary with solar 
activity

Environment Model

Interaction 
Model

Performance 
Prediction

Ground Test Data
on Device

• Accuracy of performance prediction is dependent on fidelity of 
ground test protocols and models.

• Design margins are used to accommodate uncertainties.
– Erodes capability
– Can preclude use of newer technologies
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Drivers for Component Selection
More demanding 

mission 
requirements

Short mission 
development 

times

Desire to operate in 
more severe 

environments

Commercial 
demand for 
electronics

Use of commercial off-the-shelf 
(COTS) components

Use of emerging technologies
Higher environment specifications

Smaller, 
lighter 

spacecraft
Shrinking 

environment 
hardened 

market

Projects have a choice of accepting risk 
or using older technologies.



J. Barth/Code 561 14 February 2002

Risk Management

Understand consequences of effect
Understand risk levels
» Estimate risk of failure
» Estimate loss of data collection/viewing time

Design hardness into the system
» Design circumvention/mitigation
» Estimate overhead
» Develop degradation plan

Develop operational guidelines
» Understand time profile of effect
» Understand forecasting capability
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Radiation Environment Specification
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Janet’s Top 10 Quotes About Environment 
Specification

10. “Just tell me yes or no.”
9.  “Don’t you have a dose-depth curve laying around 

that I can use?”
8.  “But the manufacturer told me that it is rad-hard.”
7.  “If it weren’t space qualified, the manufacturer 

would not have sold it to me.”
6.  “Why on Earth would I want a person who 

‘provides radiation environment specifications’ 
charging to my JON?”
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Janet’s Top 10 Quotes About Environment 
Specification

5.  “I hired radiation specialists from ACME, and I 
need you to fix their calculations for my program 
review tomorrow.”

4.  “I called to get the radiation environment for my 
mission.  I need the number now so I’ll wait while 
you look it up in your table.”

3.  “Extra overhead like radiation engineering is not 
part of our program philosophy.”  (followed with 2 
weeks of 3-page emails of questions about 
radiation)

2.  “Well, my radiation plan was to add some spot 
shielding after the board is built.”

1.  “Hello, you don’t know me but I’m launching next 
week and I need you to sign these waivers.”
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Why isn’t there one number?
Dependent on the effect

» Mechanism of the effect
» Intermittent vs. long term
» Each effect has an interaction model requiring different inputs

− Unshielded vs. shielded
− Differential vs. integral

Dependent on mission phase
» Design – environment specification
» Mission planning – time distribution
» Risk analysis – statistics, confidence levels
» Operational guidelines – time distribution
» Anomaly resolution - nowcast
» Operations – forecast

Environment is dynamic.
Environment model development has not kept pace with 
technology changes.

» Models were designed for total dose applications
» Large design margins
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How good are the environment models?

Depends on the environment
» Solar proton models are the best.
» Trapped particle models are particularly bad – GEO.
» Are for average or worst case conditions
» Few have statistical distributions

Environment is dynamic – the models are not.
Environment model development has not kept 
pace with technology changes.
» Models were designed for total dose applications
» Large design margins
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Characteristics of the Radiation 
Environment

High energies
» Electrons – 10s of MeV
» Protons – 100s of MeV
» Heavier Ions – 1000s of MeV

Solar variability drives population levels
» Long term solar cycle
» Solar rotation
» Solar storms, magnetospheric storms

Magnetosphere filters galactic and solar particles
» Polar, low-earth orbits are exposed to interplanetary 

levels during passes over the poles
Trapped population has complex spatial 
distribution
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Total Ionizing Dose (TID)

Cumulative long term ionizing damage
Strongly dependent on mission duration, orbit, 
and shielding
Effects
» Threshold Shifts
» Leakage Current
» Timing Skew
» Functional Failures

Can reduce with shielding
» Low energy protons
» Electrons
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Total Ionizing Dose

Solar protons
Trapped protons
Trapped electrons
Secondary
» Bremsstrahlung (high 

electron 
environments)

Mission totals for end-of-
life estimates
Time profiles of 
accumulation for 
degradation planning
Final specification
» Dose-depth curves
» Spacecraft specific dose 

levels

Contributing Particles Environment Spec.
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TID for Solid Spheres - GLAS
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TID - Compare Missions
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TID - System Hardening

Risk avoidance
» Component selection
» Shielding strategies

− May need more accurate knowledge of component 
shielding

Risk management
» Plan for graceful degradation
» Requires accurate knowledge of how device will 

respond in the space environment
− System criticality
− Application
− Characterization of device response

Parametric degradation
Enhanced low dose rate



J. Barth/Code 561 14 February 2002

GLAS Instrument: 3-D Radiation Model
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Location Specific Dose Data

Detector LI-1 (rads Si) Detector LI-5 (rads Si) Detector LI-9 (rads Si) Detector LI-13 (rad
Trapped Protons 414 Trapped Protons 397 Trapped Protons 376 Trapped Protons
Trapped Electrons 469 Trapped Electrons 231 Trapped Electrons 194 Trapped Electrons
Solar Protons 993 Solar Protons 812 Solar Protons 699 Solar Protons
Brems. 6 Brems. 6 Brems. 7 Brems.
Total 1,882 Total 1,446 Total 1,276 Total

Detector LI-2 (rads Si) Detector LI-6 (rads Si) Detector LI-10 (rads Si) Detector LI-14 (rad
Trapped Protons 389 Trapped Protons 399 Trapped Protons 397 Trapped Protons
Trapped Electrons 344 Trapped Electrons 295 Trapped Electrons 290 Trapped Electrons
Solar Protons 818 Solar Protons 831 Solar Protons 792 Solar Protons
Brems. 6 Brems. 8 Brems. 7 Brems.
Total 1,557 Total 1,533 Total 1,486 Total

Detector LI-3 (rads Si) Detector LI-7 (rads Si) Detector LI-11 (rads Si) Detector LI-15 (rad
Trapped Protons 367 Trapped Protons 416 Trapped Protons 419 Trapped Protons
Trapped Electrons 263 Trapped Electrons 368 Trapped Electrons 399 Trapped Electrons
Solar Protons 714 Solar Protons 947 Solar Protons 960 Solar Protons
Brems. 5 Brems. 13 Brems. 7 Brems.
Total 1,349 Total 1,744 Total 1,785 Total

Detector LI-4 (rads Si) Detector LI-8 (rads Si) Detector LI-12 (rads Si) Detector LI-16 (rad
Trapped Protons 359 Trapped Protons 435 Trapped Protons 456 Trapped Protons

Lidar Detectors
3 yrs. - No Design Margin - See Robert Reed for Correct Design Margin
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Displacement Damage Dose (DDD)

Cumulative long term non-ionizing 
damage
Effect:
» Production of defects which results in 

charge transfer ratio (CTR) 
degradation

» Optocouplers, solar cells, CCDs, linear 
bipolar devices

Shielding has some effect
» Solar cell cover glasses and mounting 

panels
» Only for some orbits
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Displacement Damage Dose

Solar protons
Trapped protons
Trapped electrons
Neutrons
» Secondary from 

shielding
» RTGs

Mission totals for end of 
life estimates
Time profiles of 
accumulation for 
degradation planning
Final specification
» Energy spectra
» Shielded

Contributing Particles Environment Spec.
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Trapped Electrons - EOS
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Solar Protons for DDD – GLAS
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DDD - System Hardening

Risk Avoidance
» Not possible for all technologies
» Protons are difficult to stop with shielding
» Hardening techniques are not effective
» Hardness changes with processing

Risk Management
» Reduce effect with shielding
» Plan for degradation
» Knowledge of radiation environment at detector
» May require on-ground simulation
» Models are not validated – need test flights
» Mitigation through software
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Single Event Effects

Event caused by a single charged particle
Effects:
» Non-destructive:  SEU, SET, MBU, SEFI, SHE
» Destructive: SEL, SEGR, SEB

Severity is dependent on:
» type of effect
» system criticality

Shielding has little effect
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Single Event Effects (SEEs)

Heavy ions – direct 
ionization
» Galactic cosmic ray
» Solar

Protons – indirect 
ionization (mostly)
» Trapped
» Solar

Contributing Particles
Time profiles
Peak levels
Background levels
Final specification
» Heavy ions - linear energy 

transfer (LET)
» Protons - energy spectra

Environment Spec.
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Heavy Ions - The “LET” Metric
Particle passing through sensitive node creates 
an ionization path - direct ionization
Need to characterize the effect of all heavy ions
» All energies
» All elements

Linear Energy Transfer (LET) metric is used
» Energy loss per unit path length (de/dx)
» Units are MeV/cm 
» Divide by density of material to get MeV-cm2/mg

Defines complex environment with one profile
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The LET Metric for Fe 
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Heavy Ions for SEEs ~ GEO
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LET Dependence on Orbit for GCRs
100 mils Aluminum Shielding
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Dependence on Solar Activity
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Protons - The “Particle Energy” Metric
Indirect ionization
» Proton hits nucleus in the materials near a sensitive 

node.
» Heavy ion is created.
» Heavy ions with sufficient range create ionization.

Codes account for heavy ion production
Energy of incident particle is more important
Direct ionization by protons?
» Rate increased by 105
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Trapped Protons for SEEs - GRACE
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Solar Protons for SEEs - TERRA
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System Hardening for SEEs
Risk avoidance
» Rad-hard does not always imply SEE hard.
» Shielding is not an effective mitigator.
» System should be hard to latchup.

− Is not always possible to find replacement part
» Performance requirements push designers to use 

sensitive technologies.
Risk management
» Typical for non-destructive events - EDAC
» Destructive - rate prediction for assessment of level of 

risk
» Both require accurate knowledge of how device will 

respond in the space environment
− Type of effect & system criticality
− Definition of peak & average environments
− Characterization of device response to particle hits
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Trapped Protons - SAA Passes
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Worst Case SAA Pass - Protons
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Time Profiles – Mission Planning
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Time Profiles – Mission Planning
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Single Event Effects on Missions

MAP – Single event transient on a voltage 
comparator
HST – Single event transients on an 
optocoupler
Terra – Single particle events on the solid state 
star tracker (SSST)
Flight Data Recorders – Single event upsets
» HST
» SAMPEX
» Seastar
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Seastar - Single Event Upsets
Single Event Upsets on Flight Data Recorder

January 1 - December 25, 1999 – 705 km
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SRAM Upset Rates on CRUX/APEX

-1 80 -1 5 0 -1 2 0 -9 0 -6 0 -30 0 3 0 60 9 0 1 2 0 15 0 1 80

L o n g itu d e

-9 0

-7 5

-6 0

-4 5

-3 0

-1 5

0

1 5

3 0

4 5

6 0

7 5

9 0

La
tit

ud
e

1 .0 E -7  to  5 .0 E -7
5 .0 E -7  to  1 .0 E -6
1 .0 E -6  to  5 .0 E -6
5 .0 E -6  to  1 .0 E -5
1 .0 E -5  to  5 .0 E -5
5 .0 E -5  to  1 .0 E -4
1 .0 E -4  to  5 .0 E -4
5 .0 E -4  to  1 .0 E -3
1 .0 E -3  to  5 .0 E -3

U ps e ts /B it/D a y

H ita ch i 1 M :A ltitu d e :6 5 0 km  - 7 5 0 km

-1 80 -1 5 0 -1 2 0 -9 0 -60 -3 0 0 3 0 6 0 9 0 1 2 0 15 0 1 80

L o n g itu d e

-9 0

-7 5

-6 0

-4 5

-3 0

-1 5

0

1 5

3 0

4 5

6 0

7 5

9 0

La
tit

ud
e

1 .0 E -7  to  5 .0 E -7
5 .0 E -7  to  1 .0 E -6
1 .0 E -6  to  5 .0 E -6
5 .0 E -6  to  1 .0 E -5
1 .0 E -5  to  5 .0 E -5
5 .0 E -5  to  1 .0 E -4
1 .0 E -4  to  5 .0 E -4
5 .0 E -4  to  1 .0 E -3
1 .0 E -3  to  5 .0 E -3

U p se ts /B it/D a y

H ita ch i 1 M :A ltitu d e :1 2 5 0 km  - 1 3 5 0 km

-18 0 -1 50 -1 2 0 -90 -6 0 -3 0 0 3 0 6 0 9 0 1 20 1 5 0 1 8 0

L o n g itu d e

-9 0

-7 5

-6 0

-4 5

-3 0

-1 5

0

1 5

3 0

4 5

6 0

7 5

9 0

La
tit

ud
e

1 .0 E -7  to  5 .0 E -7
5 .0 E -7  to  1 .0 E -6
1 .0 E -6  to  5 .0 E -6
5 .0 E -6  to  1 .0 E -5
1 .0 E -5  to  5 .0 E -5
5 .0 E -5  to  1 .0 E -4
1 .0 E -4  to  5 .0 E -4
5 .0 E -4  to  1 .0 E -3
1 .0 E -3  to  5 .0 E -3

U ps e ts /B it/D a y

H ita ch i 1 M :A ltitu d e :1 7 5 0 km  - 1 8 5 0 km

-1 80 -1 5 0 -1 2 0 -9 0 -60 -3 0 0 3 0 6 0 9 0 1 2 0 15 0 1 80

L o n g itu d e

-9 0

-7 5

-6 0

-4 5

-3 0

-1 5

0

1 5

3 0

4 5

6 0

7 5

9 0

La
tit

ud
e

1 .0 E -7  to  5 .0 E -7
5 .0 E -7  to  1 .0 E -6
1 .0 E -6  to  5 .0 E -6
5 .0 E -6  to  1 .0 E -5
1 .0 E -5  to  5 .0 E -5
5 .0 E -5  to  1 .0 E -4
1 .0 E -4  to  5 .0 E -4
5 .0 E -4  to  1 .0 E -3
1 .0 E -3  to  5 .0 E -3

U p se ts /B it/D a y

H ita ch i 1 M :A ltitu d e :2 4 5 0 km  - 2 5 5 0 km



J. Barth/Code 561 14 February 2002

Spacecraft Charging/Discharging
Two types
» Surface charging
» Deep dielectric charging

Different sources and design mitigation 
techniques
Effects of discharge arcing
» Background interference on instruments 

& detectors
» Biasing of instrument readings
» Physical damage to materials
» Arcing – upsets to electronics, increased 

current collection, reattractition of 
contaminants, ion sputtering which leads 
to acceleration of erosion of materials
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Surface Charging
Induced charge on surface
» Low energy plasma & photoelectric currents
» “Hot” plasma (LEO vs. GEO)

Orbits with high risk
» LEO – maybe
» MEO - ? probably
» GEO - generally a greater concern
» GTO

Risk factors
» Geomagnetic substorms resulting in injection of keV

electrons
» Passage from eclipse to sunlight – positive charge 

surface due to photoelectron emission
» Large spacecraft
» High voltage power system
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Deep Dielectric Charging
Process
» High energy electrons penetrate into dielectric materials 

(circuit boards and cables).
» Charge builds up and gives rise to intense electric fields.
» When charge exceeds the breakdown potential, discharge 

occurs.
Missions affected
» Any spacecraft spending long periods in Van Allen belt 

electron regions
» MEO, GEO, GTO, Phasing loops
» Jovian

Risk factors
» Accumulation of  > 1010 E  > 1 MeV electrons within 10 hours
» Accumulation of  > 3x108 E  > 2 MeV electrons/day for 3 

consecutive days
» Accumulation of  > 109 E  > 2 MeV electrons in a single day
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Charging in GEO

Strong local 
time effects
Solar storm 
effects
Experience 
base is in 
LEO & GEO
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Spacecraft Charging

Surface
» Plasma

Deep dielectric
» High energy electrons

» > 1 MeV
» > 2 MeV

Contributing Particles
Accumulation time
Total accumulations
Space weather conditions
Final specification
» Plasma levels
» Electron energy spectra
» Accumulation profiles

Environment Spec.
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Trapped Electrons - SAA Passes
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Worst Case Pass - Electrons
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Electron Exposure - MAP
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Accumulated Electrons - MAP
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ANIK E1:  Magnetic Storm
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System Hardening for Spacecraft 
Charging

Two distinct problems
» Surface charging
» Deep-dielectric charging

Risk Avoidance
» Assume there will be a problem
» Evaluate with NASCAP 2K
» Follow accepted design practices

− Grounding
− Shielding
− Material selection
− Circuit design
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Summary of Radiation Environments
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Environment Levels
Examples

Low:  < 10 krads
Short mission durations
Moderate single event effects environment
Low displacement damage environment

Low altitude/
low inclination

(HST, Shuttle, XTE)

Moderate: 10-100 krads
Medium mission duration
Intense single event environment
Moderate displacement damage environment

Low altitude/
high inclination

(EOS, GLAS)
L1, L2, GEO

High:  >100 krads
Long mission duration
Intense single event effects environment
Intense displacement damage environment

Europa, GTO, 
MEO, << 1 AU

after LaBel
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Increasing Need for Operational Guidelines
Space Weather

Anomaly
Resolution

SW
Nowcasts

SW
Archive*

Operational Action

Operators
yes/no?

SW
Forecasts

Design
Phase

Operational
Guidelines

*Appropriate for system and 
location, event characterization, 
probabilities and confidence levels 
on long and short time scales
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Atmospheric Environments
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Natural Environments

Meteoroid & Orbital Debris
Atmospheric Density  & Composition
Plasma
Radiation Environment
Electromagnetic Radiation
Thermal Environment
Geomagnetic Field
Gravitational Field
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Meteoroid/Orbital Debris

Meteoroids
» Primarily remnants of comet orbits

− Several times a year Earth intersects a comet orbit
» Asteroid belt

− Sporadic particles on a daily basis

Debris
» Operational payloads, Spent rockets stages, Fragments 

of rockets and satellites, Other hardware and ejecta
» USAF Space Command tracks over 7,000 > 10 cm 

objects in LEO
» Tens of thousands smaller objects 
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The Threat
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Atmospheric Environments
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Neutral Thermosphere

Definition
» Atmospheric Density, Density Variations, Atmospheric 

Composition (AO), Winds
Neutral atmospheric constituents
90 – 600 km
Neutral gas particles
» Lower – Atomic oxygen (AO)
» Higher – Hydrogen & Helium

Altitude variations due to temperature
» Solar cycle effects due to absorption of solar extreme 

ultraviolet radiation (EUV)
» Proxy measurement with 10.7-cm radio flux (F10.7)
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Spacecraft Effects

Spacecraft drag
» Density of neutral gas
» Altitude decay & torques

Materials degradation - Erosion
» Thermal, mechanical, optical properties
» AO (200 – 400 km) - solar cycle dependent
» Effects aggravated by micrometeoroid impacts, 

sputtering, UV exposure, contamination
Spacecraft glow
» Optical emissions generated by excitation of metastable

molecules
» Surface acts as catalyst – material dependent
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Definition of Contamination

An unwanted material or substance 
that causes degradation
in the desired function

of an instrument or flight hardware
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Systems Affected

Optical components – lenses & mirrors
Thermal control - external paints & 
blankets
Guidance – baffles
Any sensitive surfaces
» Exposed to all environments!
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Effects

Charging
Glow
False signals on optical 
detectors
Surface erosion
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Contamination Processes

Particulates and gases
» Thermal vacuum outgassing
» Engine firings
» Plume impingement

Natural Environments
Aggravating factors
» Electromagnetic radiation

− UV
− Infrared

» Thermal environment
− High temperatures
− Temperature cycling
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Mission Phases for Contamination

An Issue at All Mission Phases
» Construction & Assembly
» Ground Handling & Transportation
» Launch
» Orbital Insertion
» Early Outgassing
» Long Term Exposure
» Recovery
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Contamination Risk?

Thermal control surfaces? 

H < 1000 km? Instrument calibration? 

Solar UV? Baffle design? 

Earth albedo UV? Lens design? 

Detector design? UV instruments? 

IR instruments? Mirror design? 

Spacecraft lifetime? Cooled detector systems? 
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Spacecraft Drag



J. Barth/Code 561 14 February 2002

Plasma Environment

Energy < 100 keV - No radiation effects
Ionized gas where electron and ion densities are 
approximately equal
Sources
» Ionosphere

− Electrically charged portion of the atmosphere
− Low energy (eV)/High Density

» Geomagnetic substorm activity
− High energy (keV)/Low density

» Solar Wind
− Sun’s corona
− Seen at > 10 Billion km from the Sun

Dramatic variation with altitude, latitude, magnetic field 
strength, and solar activity
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Plasmasphere
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Plasma Interactions – Ionosphere

Supersonic spacecraft motion through 
background ions in the plasma
Solar array coupling to plasma
» Current drain on solar arrays

Contamination
» Dense pressure of atmosphere in LEO
» Modification of ambient atmosphere by outgassing

Generation and emission of plasma waves
Polar regions – High level of charging
» Exposure to auroral electrons, esp. if current collection 

occurs in ion-depleted wake zones
» Increased surface contamination  
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